
www.manaraa.com

Toward an Understanding of the Motivation of

Open Source Software Developers

Yunwen Ye1,2

1Department of Computer Science
University of Colorado

Boulder, CO80309-0430, USA
yunwen@cs.colorado.edu

 Kouichi Kishida2

2SRA Key Technology Lab
3-12 Yotsuya, Shinjuku

 Tokyo 1600-0004, Japan
k2@sra.co.jp

Abstract

An Open Source Software (OSS) project is unlikely to
be successful unless there is an accompanied community
that provides the platform for developers and users to
collaborate. Members of such communities are volunteers
whose motivation to participate and contribute is of
essential importance to the success of OSS projects. In
this paper, we aim to create an understanding of what
motivates people to participate in OSS communities. We
theorize that learning is one of the motivational forces.
Our theory is grounded in the learning theory of
Legitimate Peripheral Participation, and is supported by
analyzing the social structure of OSS communities and the
co-evolution between OSS systems and communities. We
also discuss practical implications of our theory for
creating and maintaining sustainable OSS communitie as
well as for software engineering research and education..

1. Introduction

The wide success of Open Source Software (OSS)

has recently attracted much attention. Software
engineering researchers and commercial companies alike
have been trying to learn lessons from the success of OSS
and apply some of them to the development of proprietary
and closed systems [1, 4, 12]. There are abundant lessons
in OSS to be discovered and learned, but there is still very
limited, if any, understanding of what motivates so many
software developers to dedicate their time, skills, and
knowledge to OSS systems with no monetary benefits.

Many definitions about OSS exist. In this paper, we
define Open Source Software as those systems that give
users free access to and the right to modify their source
code. OSS grants not only developers but also all users,
who are potential developers, the right to read and change
its source code. Developers, users, and user-turned-
developers form a community of practice. A community
of practice is a group of people who are informally
bounded by their common interest and practice in a

specific domain. Community members regularly interact
with each other for knowledge sharing and collaboration
in pursuit of solutions to a common class of problems. An
OSS project is unlikely to be successful unless there is an
accompanied community that provides the platform for
developers and users to collaborate with each other.
Members of such communities are volunteers whose
motivation to participate and contribute is of essential
importance to the success of OSS projects.

This paper describes a conceptual framework to
analyze the motivational issues in OSS. It argues that
learning is one of the major motivational forces that
attract software developers and users to participate in OSS
development and to become members of OSS
communities. The argument is grounded in the learning
theory—Legitimate Peripheral Participation (LPP),
developed by Lave and Wenger [10]. The essential idea of
LPP is that learning is situated in social situations, and
learning takes place when members of a community of
practice interact with each other in their daily practice.

The paper is organized as follows. To lay the
foundation, Section 2 discusses the roles and structure of
OSS communities in general, and Section 3 uses an
example for further illustration. Section 4 introduces the
theory of LPP. Section 5 elaborates our theory that
learning is one of the motivational forces. Section 6
discusses the practical implications of our proposed
theory, followed by a summary.

2. OSS Communities

The right to access and modify source code itself

does not make OSS projects different from most “Closed
Source Software” ones. All developers in a project in any
software company would have the same access privilege.
The fundamental difference is the role transformation of
the people involved in a project. In Closed Source
Software projects, developers and users are clearly
defined and strictly separated. In OSS projects, there is no
clear distinction between developers and users: all users
are potential developers. Borrowing terms from
programming languages, if we think of developers and

yunwen
Proceedings of 2003 International Conference on Software Engineering (ICSE2003), Portland, OR, May 3-10, 2003, (to appear)

www.manaraa.com

users as types, and persons involved in a project as data
objects, Closed Source Software projects are static-
binding languages in which a person is bound to the type
of developer or user statically, and OSS projects are
dynamic-binding languages in which a person is bound to
the type of developer or user dynamically, depending on
his or her involvement with the project at a given time.

2.1. Roles in OSS Communities

The distinct feature of role transformation in OSS

projects leads to a different social structure. People
involved in a particular OSS project create a community
around the project, bounded by their shared interest in
using and/or developing the system. Members of an OSS
community assume certain roles by themselves according
to their personal interest in the project, rather than being
assigned by someone else. Our previous research studying
four different OSS projects has found that a member may
have one of the following eight roles [13].

Project Leader. The Project Leader is often the person
who has initiated the project. He or she is responsible for
the vision and overall direction of the project.

Core Member. Core Members are responsible for
guiding and coordinating the development of an OSS
project. Core Members are those people who have been
involved with the project for a relative long time and have
made significant contributions to the development and
evolution of the system. In those OSS projects that have
evolved into their second generation, a single Project
Leader no longer exists and the Core Members form a
council to take the responsibility of guiding the
development, such as the Apache Group and the
PostgreSQL core group.

Active Developer. Active Developers regularly
contribute new features and fix bugs; they are one of the
major development forces of OSS systems.

Peripheral Developer. Peripheral Developers
occasionally contribute new functionality or features to
the existing system. Their contribution is irregular, and
the period of involvement is short and sporadic.

Bug Fixer. Bug Fixers fix bugs that either they discover
by themselves or are reported by other members. Bug
Fixers have to read and understand a small portion of the
source code of the system where the bug occurs.

Bug Reporter. Bug Reporters discover and report bugs;
they do not fix the bugs themselves, and they may not
read source code either. They assume the same role as
testers of the traditional software development model. The
existence of many Bug Reporters assures the high quality
of OSS, because “given enough eyeballs, all bugs are
shallow. [16]”

Reader. Readers are active users of the system; they not
only use the system, but also try to understand how the
system works by reading the source code. Given the high
quality of OSS systems, some Readers read the systems to
learn programming. Another group of Readers exists who
read an OSS system not for the purpose of improving the
system per se but for understanding its underlying model
and then using the model as a reference model to
implement similar systems [1].

Passive User. Passive Users just use the system in the
same way as most of us use commercially available
Closed Source Software. They are attracted to OSS
mainly due to its high quality and the potential to be
changed when needed.

Not all of the eight types of roles exist in all OSS
communities, and the percentage of each type varies.
Different OSS communities may use different names for
the above roles. For example, some communities refer to
Core Members as Maintainers. The difference between
Bug Fixers and Peripheral Developers is rather small
because Peripheral Developers might be mainly engaged
in fixing bugs.

2.2. Community Structure

Although a strict hierarchical structure does not exist

in OSS communities, the structure of OSS communities is
not completely flat. The influences that members have on
the system and the community are different, depending on
the roles they play. Figure 1 depicts the general layered
structure of OSS communities, in which the role closer to
the center has a larger radius of influence. In other words,
the activity of a Project Leader affects more members
than that of a Core Member, who in turn has a larger
influence than an Active Developer, and so on. Passive
Users have the least influence, but they still play
important roles in the whole community. Although they
do not directly contribute to the development of the
system technically, their very existence contributes
socially and psychologically by attracting and motivating
other, more active, members, to whom a large population
of users is the utmost reward and flattery of their hard
work [16]. Metaphorically speaking, those Passive Users
play a role similar to that of the audience in a theatrical
performance who offers values, recognition, and applause
to the efforts of actors.

Each OSS community has a unique structure
depending on the nature of the system and its member
population. The structure of an OSS community differs in
the percentage of each role in the whole community. In
general, most members are Passive Users. For example,
about 99% of people who use Apache are Passive Users.
The percentage drops sharply from Readers to Core
Members. Most systems are developed by a small number
of developers [12, 14].

www.manaraa.com

2.3. Co-evolution of OSS Systems and OSS

Communities

The roles and their associated influences in OSS

communities can be realized only through contributions to
the community. Roles are not fixed: members can play
larger roles if they aspire and make appropriate
contributions. As members change the roles they play in
an OSS community, they also change the social dynamics,
and thus reshape the structure, of the community,
resulting in the evolution of the community itself.

For an OSS project to have a sustainable
development, the system and the community must co-
evolve. A large base of voluntarily contributing members
is one of the most important success factors of OSS. The

evolution of an OSS community is effected by the
contributions made by its aspiring and motivated
members. Such contributions not only transform the role
and influence of their contributors in the community and
thus evolve the whole community, but also are the sources
of the evolution of the system. The opposite is also true.
Any modification, improvement, and extension made to
an OSS system—whether it is a bug fix, a bug report, or a
patch—not only evolves the system but also redefines the
role of the contributing members and thus changes the
social dynamics of the OSS community (Figure 2).

Unlike a project member in a software company
whose role is determined by managers and remains
unchanged for a long time until the member is promoted
or leaves, the role that an OSS member plays in the
community might constantly change, depending on how

Project
Leader

Core Members

Peripheral Developers

Bug Fixers

Bug Reporters

Readers

Passive Users

Active Developers

Project
Leader

Core Members

Peripheral Developers

Bug Fixers

Bug Reporters

Readers

Passive Users

Active Developers

Figure 1: General structure of an OSS community

Role changes through
contributions

System
evolution

Community
evolution

Mutual dependence

Role changes through
contributions

System
evolution

Community
evolution

Mutual dependence

Figure 2: The co-evolution of OSS systems and OSS communities

www.manaraa.com

much the member wants to get involved in the whole
community. The role is not preassigned, and is assumed
by the member as he or she interacts with other members.
An aspiring and determined member can become a Core
Member through the following path.

New members are attracted to an OSS community
because the system can solve one of their own problems.
The depth and richness of good OSS systems often drives
motivated members to want to learn more, to read the
system [18]. The new members now migrate from being
Passive Users to being Readers. As they gain more
understanding of the system, they are able to fix the bugs
that are either encountered by themselves or reported by
others. They may also want to add a new twist to the
system to make the system more powerful and more
suitable for their own tasks. As their developed programs
are made publicly available to other community members,
their roles as Bug Fixers and Peripheral Developers are
recognized and established in the whole community. The
more contributions they make, the higher recognition they
earn, and finally, they will enter the highly selected “inner
circle” of Core Members.

The above path describes an abstract and idealized
model of role changes of aspiring members. Not all
members want to and will become Core Members. Some
are always Passive Users, and some stop somewhere in
the middle. The important point is that Open Source
Software makes it possible for an aspiring and technically
capable software developer to play a larger role through
continual contributions. On the other hand, for OSS
projects to sustain, their communities have to be able to
regenerate themselves through the contributions of their
members and the emergence of new Core Members and
Active Developers. Otherwise, the development of
projects will stop when current active contributors leave.
Because all OSS developers are volunteers who are not
bound by any kind of formal contracts, they may leave at
any moment for various reasons.

3. An Example—The GIMP Project

In this section, we use the GIMP (Gnu Image

Manipulation Program, http://www.gimp.org) project as
an example to illustrate the different roles in and the
structure of an OSS community, as well as the co-
evolution of OSS systems and OSS communities.

3.1. The GIMP System

GIMP is a system that processes images in Linux.

The system was initially created by two students, Spencer
Kimball and Peter Mattis, at the University of California
at Berkeley. They released version 0.51 to public on Nov.
29, 1995. This version had a plug-in mechanism for other
developers to add new features easily. It was not stable at
that time, but because it was one of the earliest graphics

manipulation programs in Linux, it attracted many users,
some of whom became developers by contributing plug-
ins and helping stabilize the system. A mailing list called
GIMP-Developer was soon created to discuss and share
those extensions. On June 9, 1997, Kimball and Mattis
released version 0.99.10, which was their final release
because they graduated, started full-time employment,
and no longer had time to be involved in GIMP
development. The absence of Project Leaders halted
further development of GIMP for about 20 months.
Finally, Federico Quintero, who had developed the Color
Gradient Editor for GIMP since version 0.60, assumed the
role of Project Leader by coordinating the efforts of other
developers and making formal release, until he left for
other OSS projects. At that time, the GIMP community
had well developed, and a team of Core Members, who
had made major contributions to the system for a long
time, formed to control and coordinate the development
effort.

3.2. The GIMP Community

Like most OSS communities, the GIMP community

is a virtual community. It relies on the GIMP-Developer
mailing list for interested users and developers to discuss
the development and use of the system, to report bugs,
and to submit patches for bug fixes and new features.
Analyzing the emails sent to the mailing list is one way of
understanding the structure of the community. 7525
emails were sent to the mailing list between August 31,
1999 and August 02, 2002, and 913 members sent at least
one email. The largest number of emails a person has sent
is 817, and 502 members have sent only one email. The
member who sent the most emails is currently in charge
of release. Table 1 shows the compositional structure of
the GIMP community based on the email traffics in the
GIMP-Developer mailing list.

Table 1: The frequency of emails sent by
members to the mailing list

No. of emails No. of members Total no. of emails

> 200 5 2237
101 - 200 8 1197
51 - 100 10 695
26 - 50 29 1061
11 - 25 47 741
5 - 10 73 471
3 - 4 107 352
2 134 267
1 502 502
Total 915 7525

www.manaraa.com

Table 2 displays the number of code contributions
made by members to the GIMP system and the defined
roles of those contributing members. We counted the
number of contributions made by each person by
analyzing the change log of the system. 162 persons are
formally credited for the development of the system core,
and about half of them (82) made only one or two
contributions. The bulk of the system has been developed
by 18 persons, who each made more than 50 contributions
and combined to contribute more than 71% of the changes
of the code. However, because counting only the number
of contributions does not differentiate the importance and
quality of contributed code, the number itself, albeit an
important indication, does not define the roles of
contributors that are recognized by the community.

The GIMP community has a quite clear definition of
roles. As we have mentioned before, because the two
persons who initiated GIMP have left, all GIMP
developers are the second generation and four Core

Members are in charge of guiding the development and
are responsible for public release; 47 Active Developers
are granted write access to directly contribute to the
source code tree; and 111 Peripheral Developers exist
whose contributions must be integrated into the released
systems by Core Members or Active Developers. 476
emails are directly related to bug reports and fixes and
involve 106 members, among which 10 Bug Fixers and
15 Bug Reporters are not credited in the change log. It is
possible that some of the Peripheral Developers are
primary Bug Fixers, but we could not find data to
differentiate their roles. Core Members are the most
influential figures in the GIMP community because they
are the final decision makers; Active Developers can
directly modify the system, and the contributions made by
Peripheral Developers and Bug Fixers must be approved
by Active Developers or Core Members before they are
integrated.

Table 2: Number of code contributions and the defined roles of contributing members

Breakdown of the contributors according to their defined roles in the GIMP community
No. of

contributions
No. of

contributors Core Members Active
Developers

Peripheral
Developers Bug Fixers Bug

Reporters

>250 3 3 0 0 0 0
101-250 4 0 4 0 0 0
51-100 11 0 10 1 0 0
21-50 15 1 12 2 0 0
3-20 47 0 21 26 0 0
1-2 82 0 0 82 0 0

Not credited in
change log 25 0 0 0 10 15

Total 197 4 47 111 10 15

Table 3: The co-relation between community activity and code contribution in the GIMP project

ID No. of
emails

No. of
contributions Defined role Role transformation process

g1 817 1244 Core Member In charge of release after 2000/12
g2 601 111 Active Developer One of the earliest contributing members
g3 345 95 Active Developer Granted write access in 2001/1 after contributing 10 patches
g4 245 33 Peripheral Developer Numerous patches

g5 229 32 Peripheral Developer Patches; responsible for a separate project Gimp-Print, a print plugin for
both GIMP, Ghostscript and other systems

g6 184 5 Peripheral Developer Numerous patches
g7 179 70 Active Developer Granted write access in 1999/9 after contributing 7 patches

g8 155 1038 Core Member Become active developer in 1998/2 after contributing 10 patches,
become core in 2001/11

g9 141 69 Active Developer Granted write access in 1999/9 after contributing 6 patches
g10 140 60 Active Developer Not active since 2001/6

www.manaraa.com

3.3. The Co-Evolution of GIMP System and
Community

Table 3 reveals the co-relation between the active

participation in the GIMP-Developer mailing list and the
contributions made to the GIMP system by showing the
code contributions made by the 10 most active
participants in the mailing list. It is easy to see that all of
them are involved in the development of the system, and
7 of them are Core Members or Active Developers.

Table 3 also illustrates the role transformations of
community members, as discussed in Section 2.3. For
example, g1 and g8 were trusted to the Core Member
status due to their continuous contributions to the system
and the community. Most Active Developers have earned
their status of directly committing source code after they
had made many contributions in the form of submitting
patches as Peripheral Developers (see g3, g7, g8 and g9).

4. Legitimate Peripheral Participation

Before we proceed to argue that learning is one of the

motivations that attracts many users to become active
contributors and drive them to contribute more to OSS
systems, we need to understand how learning takes place
in communities of practice by introducing the theory of
Legitimate Peripheral Participation developed by Lave
and Wenger [10] based on their studies of several
communities of practice.

Communities of practice embody knowledge that is
often tacit in the practice of and interactions among
competent practitioners. Schön describes such knowledge
as knowing-in-action, which practitioners demonstrate
spontaneously and intuitively in their action and reaction
to the constantly changing context but are unable to
describe [17]. Because knowing-in-action is highly
situated in the context in which it is demonstrated,
learning cannot be thought of as a process of gaining,
through instruction, a discrete body of abstract knowledge
that learners will then transport and reapply in later
contexts. Instead, learning in community should be
viewed as an integral constituent of participation in the
community of practice, as a process of constructing
knowing through social interaction with other members of
the community, of changing relationships with other
members of the community, and of transforming roles and
establishing identities from a journeyman to a master in
the community.

LPP locates learning in the transformation of roles
learners assume in the participation of community
practice. Learners experience learning not as a result of
being taught, but through direct engagement in the social,
cultural, and technical practice of the community.
Learners’ entering a community entails their legitimate
participation in real practice as collaborative partners of

more competent practitioners. During collaborative
participation, learners are granted legitimate access to the
knowing of masters that can only be observed and
understood within its context. Due to the limited
capability of learners, their full participation is
impossible. At first, they can only peripherally
participate in small and easy tasks. Through legitimate
participation as peripheral participants, learners create
their own learning curriculum by developing a global
view of the community and what there is to be learned.
Learning unfolds during the interaction and collaboration
with not only the masters but also other learners. As
learners gain more knowledge, they become competent in
undertaking more important roles, resulting in changing
relationships with other members and transforming their
roles in the community. Gradually, they move toward the
center of the community and eventually establish their
identities as competent masters in the community.

LPP refers both to the role transformation and
identity development of individual members from learners
to masters, and to the reproduction and evolution of the
community. A community is a social unity defined by the
coupling relations among its members, practice, and the
outside world. The ontogenetic development of the
identity of new members—from entrance as learners to
becoming masters with respect to new learners who also
become masters over time—changes their relations with
the community as well as the relations among other
members, resulting in the evolution, or the phylogenic
development, of the community. The identity of the
community is conserved and reproduced through the
ontogenetic development of its new members who learn
via legitimate peripheral participation and become
masters that embody the mature practice and structural
characteristics of the community.

The intertwined relationship between the ontogenetic
development of the identity of an individual member and
the conservation of the identify of community provides an
anchor to understand the altruistic behaviors that so many
OSS developers have demonstrated by contributing their
time and knowledge for the benefit of the whole
community. By establishing their own identities or
shaping the identities of others through voluntary
participation in the community practice, members help
reproduce and preserve the community. This process is
also in their own interests because their identity, skills,
and reputation as master rely on the continuous existence
of the community. Therefore, from the perspective of the
community to which each member belongs, an
individual’s altruistic behavior is “altruistically” selfish
and “selfishly” altruistic [11].

5. Learning as the Motivation

Without software developers who are motivated to

start and contribute to OSS projects, OSS projects cannot

www.manaraa.com

succeed. Factors that affect motivation are both intrinsic
(cognitive) and extrinsic (social). The precondition for
motivating developers to get involved in OSS projects is
that they must derive an intrinsic satisfaction in their
involvement in OSS projects. Relying purely on altruism
makes OSS unsustainable. Intrinsic motivation is
positively reinforced and amplified when social structure
and conventions of the community recognize and reward
the contributions of its members.

Raymond has postulated that “scratching a personal
itch” is the intrinsic motivation for OSS developers [16].
Although many developers get involved in OSS
development due to the need for functionality, many OSS
developers are not motivated by utility only. For example,
neither Kimball nor Mattis, who started the GIMP project,
had any graphic arts needs. They did not start the project
because they wanted to use it [7].

We argue that learning is one of the driving forces
that motivate developers to get involved in OSS projects
because it provides the intrinsic satisfaction for OSS
developers, and the role transformation in OSS
communities that go along with learning offers the
extrinsic motivation.

Software systems are cognitive artifacts whose
creation is a process of knowledge construction that
requires both creativity and a wide variety of knowledge
about problem domains, logic, computer, and others. In
this sense, software systems, like books, are a form of
knowledge media. Many OSS systems come into
existence as results of the learning efforts of their original
developers who try to understand how to model, or to
change, the world with computational systems, as we will
explain in Section 5.1. When the source code become
accessible to users, the knowledge and creativity therein
also become accessible, providing the initial learning
resource that attracts users to form a community of
practice around the system. By participating in the
community, developers and users learn from the system,
from each other, and share their learning with each other,
as we will discuss in detail in Section 5.2.

5.1. Learning Experience of OSS Initiators

Initiators of new OSS projects may be motivated by
explorative learning or learning by doing. These two
forms of learning are not mutually exclusively; they may
exist simultaneously to inspire the initiation of an OSS
project.

Explorative learning. This form of learning is similar to
most scientific research in which learners (e.g., scientists,
practitioners) attempt to find new ways of doing things or
of overcoming an existing problem. OSS systems are
viewed by GNU developers as “scientific knowledge to
be shared among mankind” [6]. Larry Wall started Perl
because he ran into a problem he couldn’t solve with
existing tools, and he wanted to explore a way of doing

things better [20]. Similarly, John Ousterhout initiated his
Tcl/Tk project because he wanted to create a reusable tool
command language for his many research systems [15].
Atsushi Aoki started Jun—a Smalltalk and Java library
for manipulating 3D graphics and multimedia data,
because he wanted to explore the possibility of handling
both geometry and topology of 3D graphics [1].

Learning by doing. In this form of learning, the learners
want to deepen their understanding of a certain domain by
actually engaging in practical tasks that allow them to
apply their existing knowledge and to perfect their current
skills. By definition, hackers, who are behind almost
every OSS systems, are people who enjoy “exploring the
details of programmable systems and how to stretch their
capabilities” through programming rather than
theorizing 1 . Linus Torvalds started Linux partially
because he wanted to learn more about the architecture of
Intel 386, and the perfect way of doing so was to develop
an operating system for it [3]. Peter Mattis described his
“original impetus for GTK was simply (his) wanting to
understand how to write a UI toolkit” [7].

5.2. Learning Experience of Later Participants

When the results of the above, more often than not,

individual learning efforts are distributed in the form of
open source, they provide resources and opportunities for
other developers to learn. Most developers who start an
OSS project are master programmers, and their systems
are the products of fine craftsmanship and examples of
excellent programming practice. When those systems are
freely distributed, they grant developers in the world the
legitimate access to the skill and knowledge embedded in
such systems. Similar to the way that we learn to write by
reading literature, reading existing source code of expert
programmers is a powerful path to the mastery of
programming art. We believe that many developers are
attracted to OSS projects because they want to learn
something. As Michael Tiemann, founder of Cygnus, put
it: “It was this depth and richness that drove me to want to
learn more, to read the GNU Emacs Manual and the GNU
Emacs source code. [18]” We also believe that OSS
participants learn a lot from their OSS experience. As
Patrick Volkerding, creator of the Slackware distribution
of Linux, commented: “My experience with Linux has
taught me a lot of valuable skills. It looks like the project
has saved me from a life of COBOL. What more could I
ask for than that? [8]”

The learning experience of later participants of OSS
projects does not stop at passive absorption by reading
source code; it also happens when new participants
engage in bug reports, maintenance, and further
development of OSS projects. In most cases, new

1 Jargon Dictionary, available at http://info.astrian.net/jargon/terms/.

www.manaraa.com

participants do not become Core Members suddenly. As
we have analyzed in Section 2.3 conceptually and
illustrated in detail with the GIMP example in Section 3,
they have to earn their status and recognition in the
community gradually by making small contributions at
first. In other words, they start with peripheral
participation by, for example, reporting and fixing bugs.
By doing so, they learn by doing and their skills improve.
As their skills are gradually recognized in the community
based on their contributions, they are trusted to bigger and
more challenging tasks, and move toward the “inner
circle” of the community, becoming competent full
participants and exerting larger influence (Figure 2).

Active participation of new members creates
opportunities for them to interact with other more
knowledgeably skilled developers, and gives them
legitimate access to the expertise therein. The existence of
OSS communities enables new participants to ask
questions about a variety of aspects of the OSS systems
and to acquire help in using, understanding, modifying,
and extending the systems. One study on the
communication patterns of the FreeBSD Newconfig
project has found that 18.8% of the emails in the mailing
list of the project are questions, and 49.9% of the emails
are responses that include answers to questions,
agreement, disagreement, and additional information [21].
Questions and answers are also very common in the
GIMP-Developer mailing list. Such communities create
social networks of knowledge in which all participants
share their knowledge and learn from each other.

Another major function of the mailing list is to
provide a platform for developers to discuss the
functionality, design, and implementation of the system.
In other words, the mailing list displays the ongoing
process of creating the product. The process is yet another
learning resource for newcomers, who are given the
opportunity not only to see how the system is developed
as it is being developed, but to understand the culture of
the community and make it theirs by observing how
skilled developers talk, work, and collaborate with each
other.

5.3. Social Aspects of Extrinsic Motivations

The social fabric inherent in OSS communities

reinforces the intrinsic motivation for participating in
OSS projects as a form of learning. Only in a society
where technical supremacy is highly appreciated can
developers acquire good reputations among their peers by
displaying their skills through free distribution, and often
wider acceptance, of their systems. The good reputation
attracts attention, trust, and cooperation from others and
lays the foundation for advancing the original developers’

agenda and the establishment and development of OSS
communities.

Members close to the center of the community
(Figure 1) enjoy better visibility and reputations than do
peripheral members. The road to the core has to be paved
by contributing more to the project and interacting more
with their members (Figure 2). As new members
contribute to the system and the community, they are
rewarded with higher recognition and trust in the
community, and higher influence as well. In the GIMP
community, most developers who have contributed a lot
are given the right to directly contribute to the system.
Some even become Core Members.

Rewarding contributing members with higher
recognition and more important roles is also important for
the sustainability of the community and the system
development, because it is the way that the community
reproduces itself (Section 4). In the GIMP community, 29
Active Developers have not been active for at least a year,
but the community is still prospering because many new
developers have become competent participants along the
path of LPP. From the log of source code commitments,
we have found that 25 developers started contributing
code in the recent two years.

5.4. An Oriental Perspective

The viewpoint of learning as a motivation that

intrinsically drives people to get involved in OSS
development and that extrinsically rewards them with
higher social status and larger influence in OSS
communities is in parallel with a tradition of Eastern
culture. Intellectual property is a very new concept in
Eastern culture; instead, scholars have long pursued
intellectual prevalence by commanding high recognition
and respect from the people, especially the ruling class
and intelligentsia, through the free distribution of their
writings. Writings are treated as the heritage and public
assets of the whole society and they are free to all. More
importantly, all writings are open to interpretation. In fact,
most scholars build their own theory and knowledge by
commenting and annotating the writings of earlier
scholars while they are reading. Although comments and
annotations are often the products of the scholars’ own
efforts of understanding, assessing, and learning the
writings produced by others, they become free learning
resources and inspire further modifications and
interpretations. The hallmark of an established scholar is
the authority of interpreting the writings of a well-
respected ancient scholar (e.g. Confucius), and only those
who can integrate the ideas of their ancestors and
contemporaries alike and convince others with their freely
distributed writings can acquire such status.

www.manaraa.com

6. Discussions

Realizing that learning is one of the major driving

forces for OSS development has practical implications in
managing OSS projects and raises several questions in
software engineering education and research.

6.1. Creating Opportunities for LPP

Learning through LPP is not a result of direct and

intentional teaching; instead, it is enabled by legitimate
participation in practice and legitimate access to learning
resources—products and process—available in the
community. The openness of the produced system, the
development process, and the communications among
members in OSS communities enables learning by
watching and invites learning by doing, and thereby is
directly related to the learning experience of the people
involved [9]. Although all OSS communities are open to
certain forms of participation and access, the different
control structure inherent in each OSS community due to
considerations of system quality [13] creates different
degrees of openness that allows the legitimate
participation and access of community members.

Table 4 shows the possible combinations of openness
in two dimensions: product (row) and process (column).
In the product dimension, open release means that only
formally released versions are accessible to all
community members; and open development means that
all interim developing versions are accessible. In the
process dimension, closed process means that the
discussion of system development is conducted mostly
within the “inner circle”, often through a strictly
controlled mailing list which is not accessible to other
members; transparent process means that although only
the “inner circle” is involved in the development process,
but their discussion is readable by other members; open
process means that the development decision is conducted
in public space, allowing the participation and access of
all interested parties. To encourage learning-motivated
participation requires the highest degree of openness in
both dimensions because it offers more learning
resources. However, it may also reduce the Project
Leader’s control over the system. This conflict needs to
be balanced by those who want to make their systems
open source.

The possibility for newcomers to participate
peripherally is another key point in LPP. To attract more
users to become developers, the system architecture must
be designed in a modularized way to create many
relatively independent tasks with progressive difficulty so
that newcomers can start to participate peripherally and
move on gradually to take charge of more difficult tasks.
The way a system is partitioned has consequences for
both the efficiency of parallel development—a

prerequisite to OSS—and for the efficiency of knowledge
acquisition. This adds an extra dimension of importance
to the modularity of software systems because it ensures
the possibility of legitimate peripheral participation of
new members. The plug-in architecture of GIMP is quite
effective in engaging new developers. Linux could not be
such successful without its well designed modularity [19].

Another approach to afford peripheral participation is
to intentionally under-design the system by leaving some
non-critical parts unimplemented to facilitate easy
participation. The TODO list most OSS systems have
creates guidance for participation. Rather than just listing
TODO items, grouping them according to their estimated
difficulty might provide a better roadmap for newcomers
to start participation at periphery.

6.2. Advice for OSS Practitioners

Developers at the center of OSS communities should

not only focus on the development of the system itself,
but also pay enough attention to the creation and
maintenance of a dynamic and self-reproducing OSS
community. Core Members and Active Developers should
also strive to create an environment and culture that
fosters the sense of belonging to the community and
mechanisms that encourage and enable newcomers to
move toward the center of the community through
continual contributions. It is very important for the
community to be responsive to the questions and
contributions of newcomers to sustain their interest and
encourage their further participation. Old members should
remember that they are also the learning resources for
newcomers. One possible mechanism is to have skilled
members take turns in the mailing list to answer questions
of newcomers, to help new contributors perfect their code
contributions.

People who want to start an OSS project need to
consider how many learning opportunities it offers, and
how easy it is for others to participate legitimately and
peripherally. For example, a system developed with
COBOL is probably less attractive to OSS developers
than a system developed with Java because the demands
for COBOL developers are much lower in today’s world.
A system with large size and cumbersome architecture,
such as the early version of Mozilla, is also difficult to
attract OSS participants [2].

Table 4: Openness of OSS communities

 Open release Open
development

Closed process GNU; Jun APACHE
Transparent
process Tcl/Tk PostgreSQL

Open process GIMP

www.manaraa.com

6.3. Impacts on Education and Research

The existence of many OSS projects provides a

possibility for educators to change the way of educating
and training new software professionals in schools [5]. By
integrating OSS projects with university classes, students
are given the chance to learn programming by reading the
existing systems developed by world-class professionals.
At the same time, they can work together with skilled
developers and gain practical experience in developing
systems of industry scale and strength. From such
collaborations, students also acquire the communication
skills of presenting ideas effectively and of taking
feedback from other developers, which are essential in
practical development settings that invariably require
teamwork. Moreover, introducing students into OSS
projects will foster the next generation of OSS developers
and sustain the further development of the OSS
movement.

Given the importance of learning in OSS
communities, the importance of the skill of reading
programs and tools that support program reading and
understanding should be stressed more [1]. Current
software engineer education and research focuses mostly
on system writing. However, as we all know from our
language learning experience, to become good writers, we
have to learn to read first, and read a great amount of
good literature.

7. Summary

In this paper, we have tried to create an

understanding of what motivates people to participate in
OSS development. We applied the LPP theory to
understand how to form and sustain OSS communities
that are essential to the success of OSS projects. We
argued that learning is one of the major driving forces that
motivate people to get involved in OSS communities. We
discussed how our theory can inform software
engineering researchers and OSS practitioners.

OSS is a very complicated phenomenon that is
related to technology, human behaviors, economics,
culture, and society. We do not claim that our theory
clarifies all those complicated, intertwined relationships,
but we do believe that it creates a better theoretical
understanding of OSS from a new analytical angel, and
provides practical guide to the management and
development of OSS projects.

Acknowledgment.
The authors thank Kumiyo Nakakoji and Yasuhiro
Yamamoto for their valuable feedback. The research was
supported by the National Science Foundation, Software
Engineering and Language Program, Grant CCR-
0204277.

References

[1] Aoki, A., K. Hayashi, K. Kishida, K. Nakakoji, Y.

Nishinaka, B. Reeves, A. Takashima, and Y.
Yamamoto. "A Case Study of the Evolution of Jun:
An Object-Oriented Open-Source 3D Multimedia
Library," in Proceedings of 23rd International
Conference on Software Engineering (ICSE'01)
(Toronto, Canada, 2001), IEEE Press, 524-533.

[2] Baker, M., The Mozilla Project and Mozilla.org, at
http://www.mozilla.org/editorials/mozilla-
overview.html, accessed on 2/11, 2002

[3] DiBona, C., S. Ockman, and M. Stone. eds. Open
Sources: Voices from the Open Source Revolution.
1999, O'Reilly & Associates: Sebastopol, CA.

[4] Dinkelacker, J., P.K. Garg, R. Miller, and D. Nelson.
"Progressive Open Source," in Proceedings of 24th
International Conference on Software Engineering
(ICSE'02) (Orlando, FL., 2002), ACM Press, 177-
186.

[5] Dvorak, G. "Collective Education," Ubiquity, 2001.
2(16):
http://www.acm.org/ubiquity/views/g_dvorak_1.html

[6] FSF, GNU Philosophy, at
http://www.gnu.org/philosophy/philosophy.html,
accessed on 2/11, 2002

[7] HackVan, S., Where Did Spencer Kimball and Peter
Mattis Go?, at http://devlinux.com/, accessed on
2/11, 2002

[8] Hughes, P. "Interview with Patrick Volkerding,"
Linux Journal, 1994. 1994(2es): 3.

[9] Hutchins, E. Cognition in the Wild. The MIT Press,
Cambridge, MA, 1994.

[10] Lave, J., and E. Wenger. Situated Learning:
Legitimate Peripheral Participation. Cambridge
University Press, Cambridge, UK, 1991.

[11] Maturana, H.R., and F.J. Varela. The Tree of
Knowledge: The Biological Roots of Human
Understanding. Shambhala Publicaions, Boston, MA,
1998.

[12] Mockus, A., R. Fielding, and J. Herbsleb. "A Case
Study of Open Source Software Development: The
Apache Server," in Proceedings of 2000
International Conference on Software Engineering
(ICSE2000) (Limerick, Ireland, 2000), 263-272.

www.manaraa.com

[13] Nakakoji, K., Y. Yamamoto, Y. Nishinaka, K.
Kishida, and Y. Ye. "Evolution Patterns of Open-
Source Software Systems and Communities," in
Proceedings of International Workshop on Principles
of Software Evolution (IWPSE 2002) (Orlando, FL,
2002), 76-85.

[14] O'Reilly, T. "Lessons from Open-Source Software
Development," Commun. ACM, 1999. 42(4): 33-37.

[15] Ousterhout, J. "Scripting: Higher Level Programming
for the 21st Century," IEEE Computer, 1998. 31(3):
23-30.

[16] Raymond, E.S., and B. Young. The Cathedral and
the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. O'Reilly, Sebastopol,
CA, 2001.

[17] Schön, D.A. The Reflective Practitioner: How
Professionals Think in Action. Basic Books, New
York, 1983.

[18] Tiemann, M. "Future of Cygnus Solutions," in Open
Sources: Voices from the Open Source Revolution,
DiBona, C., S. Ockman, and M. Stone. (eds.),
O'Reilly, Sebastopol, 1999, 71-89.

[19] Torvalds, L. "The Linux Edge," Commun. ACM,
1999. 42(4): 38-39.

[20] Wall, L. "The Origin of the Camel Lot in the
Breakdown of the Bilingual Unix," Commun. ACM,
1999. 42(4): 40-41.

[21] Yamaguchi, Y., M. Yokozawa, T. Shinohara, and T.
Ishida. "Collaboration with Lean Media: How Open-
Source Software Succeeds," in Proceedings of 2000
International Conference on Computer Supported
Cooperative Work (CSCW'00) (Philadelphia, PA,
2000), ACM Press, 329-338.

